News

Four headshots of winnners of the 2024 Karches Prize - Shandon Amos, Christina Cabana, Ivan Pires, and Jason Yu.

Introducing the 2024 Karches Prize winners

Congratulations to the winners of the 2024 Peter Karches Mentorship Prize — Shandon Amos, Christina Cabana, Ivan Pires, and Jason Yu.

The Peter Karches Mentorship Prize is awarded annually to up to four Koch Institute postdocs, graduate students or research technicians who demonstrate exemplary mentorship of undergraduate researchers or high school students in their labs. The prize allows the Koch Institute community to celebrate and recognize the critical role that mentors play, both personally and professionally, in the early stages of a scientist’s career.

Filter by

Filter by Title/Description

Filter by Topic

Filter by Year

The Building Blocks of Creative Chemistry

Chemical & Engineering News

A Chemical & Engineering News profile of David H. Koch Professor of Engineering Paula Hammond traces her passion for chemical engineering, from her early fascination in high school with the creative potential of chemistry to her current work here at the Koch Institute. Hammond harnesses electrostatic properties of materials to build nanoparticles that address a vast array of engineering problems, from storing electochemical energy to timing and targeting the delivery of cancer drugs.

Myc Drop

Cell Chemical Biology

A research team led by KI faculty member Angela Koehler developed a strategy for reducing the activity of Myc, one of the most common, but notoriously difficult to target cancer-promoting genes. Scientists have tried–and failed–for decades to develop drugs that block the Myc protein, which is overexpressed in about 70% of cancers. In a study appearing in Cell Chemical Biology, researchers discovered a new compound that ties up Myc's binding partner, Max. The compound stabilizes bonds between two Max molecules, leaving unpartnered Myc molecules to be broken down within cells. The compound, which the study found to suppress tumor growth in mouse models, has been licensed by Kronos Bio for further study and development. 

Taking a Deep Dive with DOLPHIN

MIT News

DOLPHIN, a non-invasive imaging system from the laboratories of KI faculty members Angela Belcher and Paula Hammond, uses near-infrared light to find tiny tumors no more than a few hundred cells large. In a study appearing in Scientific Reports, researchers used their imaging system to track a 0.1-millimeter fluorescent probe through the digestive tract of a living mouse. The study also showed that DOLPHIN (which stands for "Detection of Optically Luminescent Probes using Hyperspectral and diffuse Imaging in Near-infrared") can detect the probes to a tissue depth of 8 centimeters–about 5 centimeters deeper than any existing biomedical optical imaging technique. The researchers are adapting their imaging technology for early diagnosis of ovarian and other cancers that are currently difficult to detect until late stages. The study was led by Mazumdar-Shaw International Oncology Fellow Neelkanth Bardhan, and was supported by the Koch Institute Frontier Research Program and the Bridge Project

Spectrum of Opportunity

MIT Spectrum

In an MIT Spectrum profile, KI faculty member Stefani Spranger talks about the advantages and challenges of building a lab at the forefront of cancer immunotherapy research. Like many new labs, Spranger's interdisciplinary team has the opportunity to explore a range of investigative approaches, but hasn't yet had time to build up funding, name recognition, and other resources to support them in their work. That's where an endowed professorship, such as Spranger's appointment last year as the Howard S. (1953) and Linda B. Stern Career Development Professor, can make a big difference. 

All That and a Bag of MicroColonyChips

MIT News

Measuring the toxic effects that chemical compounds have on cells is critical for developing cancer drugs and in fields like environmental regulation. The current gold-standard cell toxicity test, the colony formation assay, is time-consuming and labor intensive, while quicker tests sacrifice accuracy and sensitivity. The MicroColonyChip retains the sensitivity of the colony formation assay, but is fast and fully automated, delivering data in days rather than weeks. The chip was recently developed by the Engelward laboratory, in part using code developed by KI faculty member Sangeeta Bhatia and former KI postdoc and Mazumdar-Shaw International Oncology Fellow David K. Wood. The technology, described in Cell Reports, could help researchers identify and evaluate new drugs faster, advance personalized medicine applications, and support regulatory use. Leona Samson, KI faculty member emerita, also contributed to the work. 

Better Mammography through AI

New York Times

Regina Barzilay's work using AI algorithms for early detection of breast cancer was highlighted in a New York Times feature about technology and health care. With current diagnostic tools, it is difficult to determine if a suspicious lesion seen in a mammogram is high risk, benign or malignant, leading to false positive results that then lead to unnecessary biopsies and surgeries for thousands of women annually. Barzilay's system, now in use at MGH, uses machine learning to detect similarities between a patient’s breast and a database of 70,000 images for which the malignant or benign outcome was known. You can hear Barzilay talk about her work in interviews with WBUR and CNBC. Barzilay co-chairs the KI's summer symposium about machine learning and cancer on June 14.

Tortoises All the Way Down

New York Times

A new oral insulin delivery capsule could one day replace daily injections for people with type 1 diabetes. Developed by a team led by KI faculty member Robert Langer and longtime collaborator Giovanni Traverso, the capsule, made of stainless steel and biodegradable polymer components, injects a small needle made of compressed insulin into the stomach wall before passing harmlessly through the digestive system. To make sure that the pill lands in the correct orientation to the stomach wall, the researchers developed new device designs that were inspired by the shape of the leopard tortoise, whose angled shell ensures it can roll back on its feet no matter how it falls. In a study published in Science, researchers showed that the capsule could deliver other protein drugs that, like insulin, are too large or delicate to be absorbed undamaged by the digestive system. The team is working with Novo Nordisk to refine the technology and optimize its manufacturing process.

Lunch Lines of Inquiry

MIT News

Thanks to a fortuitous connection in the Koch Café, it is now possible to longitudinally study cancer progression and treatment response in genetically engineered mouse models using circulating tumor cells. A new microfluidic platform, described in Proceedings of the National Academy of Sciences, combines expertise from the Manalis, Jacks, Shalek, and Vander Heiden Lab to capture and genomically profile these vanishingly rare cells from a single awake mouse without depleting the animal’s limited blood supply. 

Headphone Jacks

Transnetyx

Tyler Jacks sat down with Transnetyx founder and CEO Bob Bean to share his path to cancer research and his insights into building a career in science, the power of mentorship, and putting together a great lab. Listen in at the Highly Cited podcast.

In Fighting Shape

MIT News

Researchers in the laboratories of Scott Manalis and Alex Shalek have teamed up to test whether a cancer cell is fit enough to survive cancer treatment – and identify the weaknesses that may help clinicians knock drug-resistant cells out. The study, appearing in Genome Biology, combines the Shalek Lab's expertise in single-cell mRNA sequencing and a Manalis Lab device that measures the mass and growth rate of individual cells to investigate treatment of glioblastoma in collaboration with Keith Ligon's lab at Dana-Farber Cancer Institute. By overlapping cell measurements from the device and gene expression measurements associated with cellular responses to an experimental drug known as an MDM2 inhibitor, the team identified populations of resistant glioblastoma cells and gained new insights into how to target these cells more efficiently.